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OSCIL~TIONS OF A GAS IN A TUBE 
A PERIODICALLY VARYING PRESSURE* 

A.L. NI 

One-dimensionalnon-linearmotions of an ideal gas in a tube are considered. 
The tube is closed at one end, and the pressure, periodically varying with 
time, is specified at the other end. Non-linear asymptotic equations eon- 
trolling the periodic oscillation of the gas are obtained for the frequency 
range close to the resonance frequencies. The complete problem of integrat- 
ing the system of partial differential equations of gas dynamics is reduced 
to finding the solution of a single functional equation. Continuous 
solutions are constructed as well as solutions containing shock waves. it 
is shown that within the framework of the theory devefopsd here, the 
solution of the problem in question is not unique for a fixed tube length 
and over a certain range of fxequencies: two different solutions exist, 
one smooth, and another containing strong discontinuities. 

A similar problem wao studied earlier in /l-3/. The case of short tubes was analyzed 
most exhaustively in /l/ where the method of deformed Poincare-Lighthill coordinates was used 
to derive the non-lineargas oscillation equations (an analogous method of studying the reson- 
ant oscillations was givan in /4/ for another class of problems). This method, however, does 
not enable discontinuous solutions to be constructed without additional assumptions. Unlike 
/4/, in the present case the problem of introducing the discontinuities is complicated even 
further by the fact that the shock waves generated within the flow vanish, after reflection 
from the boundary where the pressure is specified, in the form of a sarefaction wave. The 
centred rarefaction wave becomes a discontinuity as the boundary, and the gas pressure falls 
on passing through this discontinuity. This makes the procedure for constructing discontinuous 
solutions /1,2,4-U/ no longer suitable, since the stipulation that rarefaction dfscontinuit- 
ies are forbidden is an essential factor when analyzing flows with shock waves used in the 
papers mantioned above. In addition to the above problems, problems of a fundamental nature 
also arise. The basic investigation on the non-linear oscillations ofagas, containing quant- 
ative results /l-11/, ware carried out assuming the flow to be isentropic, and neglectingthe 
changes in the Riemann invariant which occurs during the interaction between the character- 
istics and the shock waves. In the case of /3-U/ these assumptions represent an accurate 
result since the contribution of the above two effects to the asymptotic equation of gas 
oscillations are vanishingly small. In the present case the increments in the entropy and 
Riemann invariant in the shock waves have the same order of smallness as the basic terms re- 
tained in the equations of motion of the gas /l-3/. If this is indeed so, then the analysis 

of the oscillatory gas motions must change in a fundamental manner. The effect of the shock 
waves on the field of flow is also studied. It is shown that the increase in entropy at the 
discontinuities is not significant in the problem in question. The change in the Value of 
the Riemann invariants, though causing the appearance of additional terms in the asymptotic 
equations of motion, has practicallynoeffect on the final result. The solution obtained 
differs from one that disregards the change in the value of the Riemann invariant, by a higher- 
order infinitesimal. This is due to the fact that the contributions in question are different 
from zero only in narrow regions of the flow. It is established that the well-knownarearule 
/3/ can be used to introduce the discontinuities with sufficient accuracy. All that has been 
said above makes it possible to use a correspondingly modified approach /3/ to solving the 
problem of resonant oscillations in a gas, caused by a periodically varying pressure. 

1, Equations of motion. The gas dynamic equations wirtten in characteristic form are 

where the differentiation operators acting along the characteristics are denoted by 
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iiere E, qr c are the charactaxistic variables for the famQ.iaS C*, C- and C", t is the time, 

x is a Cartesian coordinate, LA is the velocity of the gas, p is the pressure, p is the density, 
s is the entropy ma a =(~p/a~):~ is the speed of sound. The parameters of the unperturbed 
gas at rest are denoted everywhere by a zero subscript. 

bet us simplify the equations of motion by using the fact that the waves considered have 
small amplitude e and the change of entropy within the field of flow is caused only by the 
appearance of weak shock waves and is therefore of the order of ss /12/. Knowing the final 

result in advance,we retain in the equations of motion only the terms needed to compute the 
pressure with an accuracy of O(@). In this case it is obvi.ously sufficient to determine the 
position of the characteristics with an accuracy of 0 (sZ) I and terms of order d in the 

equations of motion can be neglected. The following relations obviously hold: 

P = p@, sa) + 0 (4, a = a (P, so) + o&g) 

This implies that in order to compute the pressure and velocity fields with the requiredaccur- 
acy, we can assume that p and a in the first two equations of motion are functions of the 
pressure when the value of the entropy is unperturbedt and we can reduce them to the standard 
form 

where J* are the Riemann invariants and xis the adiabatic exponent. We note again that now a 
is no longer the true speed of sound at the given point of the flow, and differs from it by a 
quantity of the order of o(E'}. Let us consider a boundary value problem suppose the condition 
of impermeability u(X, f) = 0, is given at the right and of the tube, and the pressure, psriod- 
ically varying with time as 

p (Q, t) = pe 11 4 Sf(91, J (t "I- T) = f(t) 

(6 is a small parameter, T is tha period, and Xdenotes the length of the tube) at the left 
end. We introduce the dimensionless variables using the formulas 

P = p* (a + sp'), fJ = a, (1 i f%‘), n = aI& 

‘T* = a, fsJk‘* Z/f% - I)), t = Tt', 5 = a,Ts' 

From now on we shall o&t the primes accompanying the dimensionless variables. In the new 
variables the equations of motbn and boundary conditions become 

(-g+o, (&)+I (1.1) 

ax 
i ) 3-g d@g d+(E) + +tJ-clr, 

ax ( ) x-q= - 1-t +- d- (q) + v eJ+ @) 

J+ (n, f) + J_(n, f) = 0, + [J’ (0, f) - J” (0, f)] = 61 (f) (1.2) 

We shall assume that the condition 4n = 2.4 -I- i -t 4A, where k Is an integer and A<%, holds 
for the dimensionless length of the tube n = X/(a,T) r Tkis is the case of so-called quarter- 
wave resonance for which, as was established in /l-3/, the linear theory predicts an unbounded 
increase in the solution as A - 0. 

The reason forthe appearance of a resonance in the ftarnewcrk of the linear approxfntation 
can most simply be explained by considering Fig.1 (A= 0). On the characteristics & withslcpes 
fi we indicate the values of the invariants transported along them. By virtue of the bound- 
ary conditions we have 

I*- I; - I+(&%), Is+ = - ~+(~)+~l(~)/t~), II- =- J+(Q, 
I,+ = - 12++ 24f(tr)/W) 

We see that when the characteristic C'traverses the tube twice, forwards and backwards, the 
invariant tranaferred by it acquires an increment 

A =i 2If (to) -f (Eo + k + %)I 60~ 
Tbe periodicity of f implies thar: 2m-tuple passage along the tube yields an increment In the 
value of the invariant of mh and the latter quantity increases without limit as m increases. 
An exact analytic solution of the linear problem is given in /3/i in the case of A=0 the 
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solution contains "secular" terms proportional to t. Actually, in the end there is no un- 
limited increase since, for long times, non-lineareffectsleading to stabilization of the 
system begin to exert their influence. 

Below we shall consider short tubes (n N 1). We shall identify the characteristic variable 
&(?$ with the instant when the corresponding characteristic C*(C-) emerges from the left 
(right) boundary. Then integrating the equations for the characteristics we obtain 

c+:2~[1+~~++o](t-_o+~eI+ (1.3) 

C-:z=n-- ~-+cl-(lj)](t-'l)+~~- 
[ 

I+=. s P(n)&, I-= 
t 

&)ar 

The integral I+is evaluated at E = const, aILd Z-at q = con&. 
In /3-7, 9-12/ the interaction between the waves belonging to different families are 

neglected, since the quantities @determining such interaction are of a higher order of 
smallness compared with the remaining terms in the equations for the characteristics. This 
substantially s&mplified the analysis of the almost resonant modes. It was shown in /l-3/ 
that this does not hold for the quarter-wave mode considered here. 

We shall evaluate the integrals zfbysuccessive approximations using the characteristics 
of the unperturbed gas I = t - &,z = --t + q + n as the first approximation. Clearly, the 
integrals 

t t 
z,++(2~--_E-+~, Z4SJ+(22-q--_)dT 

E r( 

on the piecewise smooth solutions differ from the exact values of I* by a quantity of order 

0 (a). This implies that Eqs.(l.3), in which I* have been replaced by Zof define in the 
(5, t)-plane curves which differ from the characteristics of the flow by quantities of order 
O(ea). We will use the equations 

~~+:x++qLl+@] (t-E) ++ezo+ 
Cl-:x=n - [l-q&r(q)] (t -11) ++eze- 

(1.4) 

J 

Fig.1 

to compute the next approximation to I*using the 
notation of Fig.2. 

Differentiating (1.4) for constant 5 and 
equating the right sides of the relations obtained, 
we establish a relation, accurate to O(e),con- 
netting the time elapsed during the motion down 
the fixed characteristics C+with the increment in 
the value of the characteristic variable n of the 
waves belonging to the opposite family and inter- 
secting the characteristic in question 

,a+[,, - -qeJ+wl-qqq)dq+ 
F P- 7) e dJ_ (11)) - ve [J+(q-n)+ 

J-(26E-n)]dq 

Fig.2 Fig.3 

The term in the square brackets can be neglected 
within the accuracy required. Indeed, in the 
regions where ar-lan, aHa - i, it is of order e 
by virtue of the first boundary condition (1.2). 
The extent of the zones of flow within whichthese 
derivatives are large is, as we shall see later, 

of order 8. Therefore, substituting the expression for dt into I+ and integrating, we find 
that the contribution of the term in the square brackets to the interaction integral is of 
order ea. 

When using the expression for dt obtained above, I+ should be calculated with care, 
since the trajectory along which the integration is carried out may encounter on its way a 
shock wave as a result of intersecting the wave characteristics of the opposite family. Let 
the characteristic variables of the waves of the second family have the values nsa and %I 
behind and in front of the front, at the point of contact (ts,zs) (Fig.2), Then 
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zl+=+ (II (Sl, %I) + z1- (%a, 3 - ,qp-d’tl? x 

PI- h tl.1) -I- II- (u, qS1 - + e [IS- (sl, q,d + 

ZZ- b q2)l + we (‘“j+ ~)J-w’I)dJ-Q)== 
VI L 

+ (II- oh, qs) -q&J+ 6) Ir (q1. qa) - 

T eZs_ (ql, q8) + +- e IJ-* (q8) (t - qd - P (ql) x 

6 - ?sl] - +- (q.1, qrr) + qE x 

IJ- b-l83 (L - %a) --J-a (%l) (t* - %l)l] 

Here and henceforth for brevity we will use the following notation: 

z1+ (Fib Ed = [J+ @A dE. ~r+fLh)= 5'/+y@ a 

L El 

zl-(tll,qz) = f&ddrl, zP-(tll, rlr) = f J-‘(q)drl 
w ¶I1 

By virtue of the obvious estimate 1 Q~- q,%I = O(e), the integrals inthe formula for Z,+con- 
taining the small parameter e as a factor are neglected in the interval (~~,q,,). Analyzing 
the expressions in the second braces we find, that they are of order E? Indeed, using the 
condition z8-z(q,&-z(qlt) and the second formula of (1.3) and recalling the estimate for 
lqln -qa 1, we have 

1 
1 - q eJ- (q‘l)] I@,- q,1) = [ i- %~sr-(rLt)](I.--*)+O(~~ 

From this it follows that the expression considered is equal to 

'+' k-(k q.%) + -he [ I-@)+ I-(q.r)l(q,l-qtl,r) + 0 (8 = 0 (a? 

by virtue of formula (1.9) of /3/ obtained for the relation at the discontinuity. 
The second boundary condition of (1.2) yields .Z-(ql)= J+(E)+ 0(&V@. Finally, we obtain 

the equation for the characteristic C+emerging from the left boundary at the instant &written 
to within terms of order O(e") inclusive 

c+:z= 1+9 
L J+(E)] (t -8 +q a[Zl-(ql, q;) - 

q eJ+(N z1- (rll,%) -q-a (rll.%J + 

'X'+Bl_e[J-'(qd (t- qd -J"(t) 4) 

Putting x=== n we find the instant at which the characteristic in question reaches the right 
boundary 

tl=f+n[l-,~~+~)+(~e)Pra~)]+ (1.5) 

x-3 
-8 I Zl-(ql, tl) - ~~J+(E)ZI-(~~, tS - 

fez,-(q~,l,)-'+'er+~~)n) 

Analogous arguments applied to the reflected characteristic C-with certain alterations 
caused by the lack of symmetry in the boundary conditions, yield the equation 

c-:x= -[1+.z$L eJ+ G)] 0 -U + * ~Z1'Wl) - 

* eJ+ (8 z1+ 6, Et) + y air+ (E, h) - 

* e [J+B (ES) (t - &2) - J+* (&) n]} + n 

(1.6) 

The above relation yields the instant t, at which the characteristic C+reaches the left bound- 
ary after being reflected from the rigid wall. 
putting x = 0, we obtain 

Substituting into (1.6) t, from (1.5) and 



502 

Transforming the last equation we obtain 

t*=zn i- 
f *eP(2)] +eWti@+e~+& 

r4+(%fi++~), #I,@--) 

‘II 
I,,= s J+‘(@)d& 

II 
which, together with the relation 

J’ (t%) = - J+ t&f + W (f,) /’ 64 
following from f1.2), forms a closed system of equations determining the solution 
problem of quarter-wave resonance. 

To derive (1.7) from the previous equation we first transform the difference 

(1.7) 

(1.8) 

of the 

11- Oh‘ 81) - 
Il+ (E, t3. Here it is clear that in calculating the relations connecting the characteristic 
variables at the right and left boundary, to obtain the required accuracy it is sufficient to 
adopt the second equation of (1.4) for the characteristics C- 

E=?J 
E 
i-j- x+l-(?)l-3$ef,+(q-sn,E)+q 

I 
Differentiating it and utiLiaing the chain of equations 

1*(++(q) +Z6f(E) = - I+(rl-n)+2df(&) f O(s) 
xe xe 

which give the boundary conditions, we find 

Consequently 

l%+(E. 11) - Ii-(nt*&) =+? [I-9&) - J-*@lI)l+ 

3--x ~&-(q&)f 0(&e) =3~el-&1,:1) 4-9 @/s* a*) 

since the expression in the square brackets is of order O(8le.e) by virtue of the boundary 
conditions. 

In deriving the last equation, for brevity we did not consider sepaxately problem con- 
nected with the regions of large flow gradients and the formation of shock waves. The argu- 
ments used in'derivjng (1.5) are fully applicable here. 

Consider the integrals I,+(&Q, I,-(q%,tJ. From the boundary conditions it follows that in 
the regions of smoothness J*(~+k+~/,)== -J+(k), with an accuracy up to the terms of higher 
order of smallness. Since the solution is, by definition, a periodic function with period 1, 
J+ (F, f "I., = - J+ (&) and I+’ (E + I/,) = I+# (g). i . e _ the square of the solution is a periodic func- 
tion with a periodof%.Onthe other hand, r, -e+ k+‘l,+O (A,e), therefore we have, within the 
accuracy required, 

Ix+ (f,,fd = (2k f i) s J”(f)df = (2k + i) I,, = const 
D 

Analogous arguments yield the same equation for ra-(ql,&). All this enables us to write 

2n= if %++(5)] (t&)-p x {~(2h+i)L4+1+'(5)n} 
[ 

from which we obtain (1.7). 

2. Study of the oscillation equations. In order to show more clearly the structure 

of the solution sought, we shall use the example given earlier in /3/. We write (1.7) and 

(1.8) for two instances &and tp, where & is in the same relation to t*, as g is to tz 



t1=2n 1 I. - -+ EJ+ (tt)] + AS” (tz) + e”f~ + te 
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(2.1) 

J+ (td) = .- J+ (tz) + 2Sf (tdi (xe) 

Let us combine the first equation of (2.1) with (1.7) and subtract (1.8) from the second 
equation of (2.1). This yields 

&=&a 
i 
2-T@(&)] +2s*aJ+*(FS+-2e~+F, 

J+ (ta) = J* (E) + 26 If (t4) - f (ta)li (4 

(2.2) 

The above formulas were derived with help of the boundary conditions (1.2) t and terms of higher 
order of smallness were neglected. The operation corresponds to Fig.1, with the linear equa- 
tions of the characteristics replaced by their non-linear counterparts. The extraordinary 
term (the second term in square brackets) is retained in the formula for tr for clarity. The 
usefulness of the transformation carried out becomes clear when we note that ta differs from 

E by an integral number of periods plus a small increment. This enables us, by virtue of 

the periodicity of the solution sought, to expand J+(t4) in the smooth regions in series. 
8ubsitituting the first two terms of this expansion into (2.2) and putting 6 ==~~,A=cs',c@ 1, 
we obtain, with the accuracy required, 

J+’ (E) Ma + ~Q.J+~ (E) + 281 = 2 If CE) - f (f + ‘&)h (2.31 

The conclusion that 6=a3, agrees with the results obtained in /l--3/. 
In /3/, where quarter-wave resonance in long tubes was studied, a mistake *as made *hen 

deriving (3_11),whichissimilarto (2.3) of the present paper. The quantity f(t,) was replaced 

there by f(tz -V,), whichisincorrect, since inthis casewehave en- 1. Nevertheless, this has no 

effect on the results obtained in /3/. 
Below, we shall assume that f(E) = -2xsin2x5/(% + I). The integration of (2.3) yields 

a third-degree algebraicequation in the unknown function J+ (f) 

J**(e) + 3pJ+ (Q- 2q cos 2n.$ -t-C = 0 (2.4) 

p = (20 + @/a, q = 3/i@ + 1) ml 
where C is an arbitrary constant. Its solution is a one-parameter family of curves, from 
which we can construct, in principle, knowing the value of the constant C at every segment 
of smoothness, a continuous or discontinuous solution oftheproblem in question. Here the 
problem arises of the choice of C and of the method of introducing strong discontinuities in- 
to the solution. 

In /4/ where half-wave resonance was studied, the problem was successfully overcome, and 
one of the decisive aspects enabling discontinuous solutions to be uniquely constructed was 
found to be the physical requirement forbidding discontinuities across which a fall in pressure 
occurs. Moreover, the discontinuity appearing in the field of flow continued its periodic 
motion along the tube and did not disappear, and this also simplified the analysis of the flow. 
The opposite situation arises in the problem of quarter-wave xesonance. From (1.2) we see 
that on reaching the left boundary the discontinuity vanishes, 
form of a centred rarefaction wave. 

being reflected locally in the 
The latter represents a discontinuity at the boundary, 

and the passage through this discontinuity is accompanied by a fall in pressure. We find that 
in describing the oscillations in terms of the differential equations we encounter, in addi- 
tion to the discontinuities described above, discontinuities interchanging between the regions 
with large gradients in which the gas is compressed. Such regions appear when a bundle of 
characteristics generated by a shock wave after it has traversed the tube completely in both 
directions impinges on the boundary. All this makes not only makes the approach used in /4/ 
unsuitable in the present case, but also the stricter methods developed later in /1,5-ll/. 
Undoubtedly the method described in /13/ offers one of the possible ways of solving theproblem 
in question, although it requires substantial reformulation before it can be used in the 
present case. 

Below we shall follow the method used in /3/, which represents essentially the method of 
characteristics, the position of which is determined not using the difference equations, but 
directly at finite distances from their origins. Modifications to the algorithm given in /3/ 
are required due to the need to take into account the interaction between the waves of differ- 
ent families. Equations (1.7) and (1.81, although incorporating such interaction,wereobtain- 
ed ignoring the variation in the Riemann invariants at the discontinuities. We shall discuss 
thus problem and derive a rule governing the introduction of strong discontinuities.into the 
solution. 

Let the characteristic C+intersect the shock wave propagating in the backward direction. 
As a result of the interaction that occurs, 
an increment GAJ+, AJ+ _ 

the value of the invariant carried alongitaqquires 

111% This change in the value affects the position of the charact- 
eristic (1.7) bY a shift of the same order es, which can be neglected. Regarding the 
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contribution e3AJ+ to (1.81, it appears to be significant by virtue of (2.31, since it 1s of 
the same order of smllness as the terms retained in (2.4). 

The assessment of the influence of the shock waves bn the pressure and velocity fields 
requires information on the width of the bundle of characteristics interacting with the shock 
wave. We shall use the following argument. The shock wave S1 (Fig.3) is reflected from the 
left boundary in the form of a parkat of rarefaction waves which, dispersing duringitsmotion 
along the tube, is reflected from the rigid wall and returns to the left boundary in the form 
of a zone of width h = 0 (e). Here the derivatives 0J+la% are of the order of 1 i e. The zone 
and its inverse image on therightboundary represent the regions of large gradients discussed 
in Sect.1. The packet pxopagates from the left boundary in the form of a compression wave, 
the characteristics of which converge and intersect, after the second reflection from the 
right boundary, at a distance I from the left boundary, generating the chock wave 8%. 

We will estimate I using (1.5)-(1.71. 
characteristic of‘the bundle. 

In Fig.3 the dashed lines show the separate 
After repeated reflection from the rigid wall its equation, 

using the notation of Fig.3, becomes 

(2.5) 

where 5, is the characteristic variable corresponding to the actual instant of time t, and 
the quantity J+&) varies from J,+to J Se, representing the values of the invariants trans- 
ported by the outer charactefistics of the bundle. The instant of a discontinuity is generat- 
ed corresponds to the condition of "overturning" the wave profile 0tlaJ+ (%,) = 0. Differentiat- 
ing (2.5) we obtain the estimate 1 = O(e). It is cleax from Fig.3 that the extension &of the 
bundle of characteristics interacting with the shock wave is of the same order. 

The simplest way to assess the effect of a change undergone by the Riemann invariant in 
the shock wave on the solution of the problem in question is to turn to the differential 
equation (2.3). This certainly leads to the appearance of an additional term AJ+ on the 
right side of (2.3), which will differ from aero, as was shown above, in the narrow extension 
zones me, lying near the shock wave and the region of compression where the gradients are 
large. ft is clear therefore that inclusion of AJ+ will introduce corrections into the 
solution, which are of the same order of smallness e and can therefore be neglected. 

Let us derive the rule for introducing strong discontinuities into the solution. FrOR3 

(2.5) we see that up to the instant the shock wave appe'ars, the characteristics of the initial 
compression zone are grouped in the region of extension 0 (e2) . Consequently their further 
relative displacement, dependent on the interaction integrals and the quadratic terms, will 
be of order 0(e3). Therefore, from the first appearance of the discontinuity up toitsarrival 
at the left boundary, the motion of the characteristics, and hence the discontinuities, are 
described with the required accuracy of the order of O(ea) by the formulas for simple waves. 
This in turn dictates the rule for introducing a shook wave as a simple wave into the region 
where the solution is multivalued. The position of the region is determined by the condition 
for the areas of the figures bounded by the curve J+ (x,t) for fixed x and by the shock wave, 
and lying on opposite sides of the latter, to be equal. 

Let us derive a formula analogous to (1.9) /3/ for the case in question. If the shock 
wave reaches the left boundary at the instant td and the characteristics intersecting it have 
initial coordinates &, &, then the area rule state that 

Js,+ 
\ (t - ts) dJ” = 0, JS1’ = J+ (%*I), Jar+ = J+ &p) 

Then by virtue of (1.7) the following series of equations holds: 

J,,+ 

s 
Xii (t - t,) dJ+ = 4 ne (J2 - g;) - -y- (Jz - 83 - II+ (&I, Eaa) = 0 

J.S1+ 

Using this formula we can show that the integral law of conservation of the invariant holds 
for the discontinuous solutions 

tr s E: 
J- (0, t) dt = - s 

J+ (%) dE + q ne fJ+* g3) - J+* (%$)I - T [J+a &) - J+*f%,)] 

h E* 

(2.6) 

(tl and t, are obtained from(l.7) where 4, is replaced by Et and Ea- respectively). In the case 

of smooth solutions, (2.6) becomes a trivial corollary of (1.7). 
Below we shall need some information on the roots of the cubic equation (2.4) with C=O. 
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In t&e limit as e - 0, (I = coast, the quantity g tends to a constant value and p depends not only 

on the length of the tube detexmined by 6, but also on the solution itslef through fJ* Thi3 

rcmts of (2.4) are found using the Cardeno formulas. 
the graphs shown in Fig.4 and 5 by dashed lines represent schematically the behavioux 

of the solutions. If P>O, then a unique real smooth solution exists of the type Shown in 

Fig.4c, The amplitude of the oscillations (by which we shall mean the highest numeIicaf vafue 

of J+j increases as p increases. on passing to p<O we have a single continuous multivalued 
solution (aig.4a and b), and this holds as Long as 9-t $>O. As p decreases the points at 
which the solution turns +?J*/aE= w) approach each other, and merge when p*+pS =O. Furtiher 
reduction in p leads to the solution separating into three smooth branches (Fig.Sa and b) and 
the amplitude of the branch passing through zero decreases as p decreases, while the amplitudes 
of the remaining two branches increase. The value p= --1.53 at k =O corresponds to the limit 
mode pa+ gp= o Figs.la and 5b &pict the situations close to the limit when the approach is 
made from different directions, namely from pa+ $>O and fl-t@<O, respectively. 

3. Numerical consmmtion of the solution. Periodic solutions of (1.7) and (1.8) 

wexe constructed using the scheme given in /3/. First a certain distribution J+(e), Was 
defined on a segment of unit length I&o,Ea-i- il satisfying the conditions 

BY the transfommtio~ 0.7) *e seg&rent if&, El+ fl lxzomes 18 &A t fZ0-6 l)i, which is &V~OUSQI 

also of unit length. If the solution was "tiltedU during this processr shock waves were 
introduced in the regions of multivaluedness according to the rule given in Sect.2. 
Th@ quantities J+if) in the section Iz&,f,ifTo+ ill were then found from (1.8). CZearLy, 
the new function constructed cm t*(Eo), t&,-t f)] also satisfied conditions (3.1) and the first 
equation follows from the law of conservation of the invariant (1.61, while the second one is 

trivial. In computing, the first condition of (3.1) holds only approximately and has been 
used in the computationasa central. New values of J+(E) obtained were continued periodically 
onto R.,, Ep-k 11, and the procedure described above was repeated until the determination was 
completed. 

The method was used to carry out the computations fox various values of e and tubelengths 

n. As a result it was established that for every fixed e a range of values of n exists close 

to the resonance values where two essentially different oscillatory modes are realizedd Ia 

one case the solution contains strong discontinuities, in the other case it is continuous, and 
thearaplitudeof the discontinuous solution exceeds that of the continuous solution. 
4 and 5 the solid lines represent the "oscillograms" 

In Figs. 

J'(s) = V, (X + i) J+ (Znt) for 6 = KM, k = 0, Y = i.4 

The dashed lines depict the solutions (reduced to the same variables land + ). The constants 
p and g were oomputed from the corresponding numerical solutions. The graphs indicated in 
Figs.4 and 5 by the same letters correspond to single values of 
and 5a, and 

0, namely to -0.38 for 4a 
-0.195 for 4b and 5b. The values of p for Fiq,la and b are -1.44 and -0.47, 

fox Fig.5a and b they are -3+6 and -1.67, and for Fig.4c they are - 0.002,0= 0.097. when O= 
-0.385,was used in the computations, solutions With discontinuities could not be constructed 
and a continuous mode was developed inthe computations. 

Fig.4 

We can conclude that two modes exist within the accuracy requires up to the instant when 
a limit situation pS+p==O occurs. We note that in accordance with (2.4) the critical value 

P = - 1.53, while the computations gave p = --1.44. The computations carried out for other valuea 
of L confirm the correctness of the deductions made. 
the dependence of the amplitude A on c. 

In Fig,6 we show a graph illustrating 

--0.%38 ( u < - O.fS5 * 
we see that two oscillation nodes exist in the range 

The situation described above bears a gualitative resemblance to the case of forced 
osicllations of a pendulum with damping /14/. We note that the above discussion can be 
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applied to the case considered in /l/, with the effect of the reflection coefficient raken 
into account. 

1. 

2. 

3. 

4. 
5. 

6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

fig.5 Fig.6 
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