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NON-LINEAR RESONANT OSCILLATIONS OF A GAS IN A TUBE
UNDER THE ACTION OF A PERIODICALLY VARYING PRESSURE"

A.L. NI

One-dimensional non-linear motions of an ideal gas in a tube are considered.
The tube is closed at one end, and the presgsure, periodically varying with
time, is specified at the other end. Non-linear asymptotic equations con-
trolling the periodic oscillation of the gas are obtained for the frequency
range close to the resonance frequencies. The complete problem of integrat~
ing the system of partial differential equations of gas dynamics is reduced
to finding the solution of a single functional equation. Continuous
solutions are constructed as well as solutions containing shock waves. It
is shown that within the framework of the theory developed here, the
solution of the problem in question is not unique for a fixed tube length
and over a certain range of frequencies: two different sclutions exist,

one smooth, and another containing strong discontinuities.

A similar problem was studied earlier in /1—3/. The case of short- tubes was analyzed
most exhaustively in /1/ where the method of deformed Poincare~Lighthill coordinates was used
to derive the non-linear gas oscillation equations (an analogous method of studying the reson-
ant oscillations was given in /4/ for another class of problems). This method, however, does
not enable discontinuous solutions to be constructed without additional assumptions. Unlike
/4/, in the present case the problem of introducing the discontinuities is complicated even
further by the fact that the shock waves generated within the flow vanish, after reflection
from the boundary where the pressure is specified, in the form of a rarefaction wave. The
centred rarefaction wave becomes a discontinuity as the boundary, and the gas pressure falls
on passing through this discontinuity. This makes the procedure for constructing discontinuous
solutions /1,2,4-11/ no longer suitable, since the stipulation that rarefaction discontinuit-
ies are forbidden is an essential factor when analyzing flows with shock waves used in the
papers mentioned above. In addition to the above problems, problems of a fundamental nature
also arise. The basic investigation on the non-linear oscillations of a gas, containing quant-
ative results /l—11/, were carried out assuming the flow to be isentropic, and neglecting the
changes in the Riemann invariant which occurs during the interaction between the character-
istics and the shock waves. In the case of /3—11/ these assumptions represent an accurate
result since the contribution of the above two effects to the asymptotic equation of gas
oscillations are vanishingly small. 1In the present case the increments in the entropy and
Riemann invariant in the shock waves have the same order of smallness as the basic terms re-
tained in the equations of motion of the gas /1-3/. If this is indeed so, then the analysis
of the oscillatory gas motions must change in a fundamental manner. The effect of the shock
waves on the field of flow is also studied. It is shown that the increase in entropy at the
discontinuities is not significant in the problem in question. The change in the value of
the Riemann invariants, though causing the appearance of additional terms in the asymptotic
equations of motion, has practically no effect on the final result. The solution obtained
differs from one that disregards the change in the value of the Riemann invariant, by a higher~
order infinitesimal. This is due to the fact that the contributions in question are different
from zero only in narrow regions of the flow. It is established that the well-known area rule
/3/ can be used to introduce the discontinuities with sufficient accuracy. All that has been
said above makes it possible to use a correspondingly modified approach /3/ to solving the
problem of resonant oscillations in a gas, caused by a periodically varying pressure.

1. Equations of motion. The gas dynamic equations wirtten in characteristic form are
Gl ) 4 () o, (L) — (%) 0, (£)=0
("a?“; pa \ot fg ' 9t /e pa \ ot /gt \at /o

where the differentiation operators acting along the characteristics are denoted by
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Here £, w, { are the characteristic variables for the families (7, (7 and €° t is the time,

% is a Cartesian coordinate, u is the velocity of the gas, p is the pressure, p is the density,
unpertu bed
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gas at rest are denoted everywhere by a zerc subscript.

Let us simplify the equations of motion by using the fact that the waves considered have
small amplitude e and the change of entropy within the fisld of flow is caused only by the
appearance of weak shock waves and is therefore of the order of e /12/. Xnowing the final
result in advance,we retain in the equations of motion only the terms needed to compute the
pressure with an accuracy of ¢ (). 1In this case it is obviously sufficient to determine the
position of the characteristics with an accuracy of O(#?), and terms of order et in the
equations of motion can be neglected The following relations obviously hold:

= p(p, 8) + O (£9), ¢ = a (p, ) + O (&%
This implies that in order to compute the pressure and velocity fields with the required accur-
acy, we c¢an assume that o and g in the first two equations of motion are functions of the
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pressure when the value of the entropy is z:nperturbeé, and we can reduce them to the standard
form

it
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where J are the Riemann invariants and xis the adiabatic « nent. We note again that now a
is no longer the true speed of sound at the given point of the flow, and differs from it by a
quantity of the order of O{s%). Let us consider a boundary value problem suppose the condition
of impermeability u{X, f) = 0, is given at the right end of the tube, and the pressure, period-
ically varying with tinme as

PO, ) =pe it + 8D, f(t+T)=f(t)

(8 is a2 small parameter, T is the period, and X denotes the length of the tube) at the left
end, We introduce the dimensionless variables using the formulas

p=py{l + gp’), a = a, {1 + ea’), 1 = geeu’
JE == goledt + 2Mn — 1), t = Tt, 2 = g’

Prom now on we shall omit the primes accompanying the dimensionless variables. In the new
variables the eguations of motion and boundary conditions become

8J% a7\
(=0 (&),=0 (1.1)
(% ),f—i'-%- o+ 25t e )
[ —
(5)y=— "*‘ ) + 275 e @
J*(n,t}+]'(n,t}=0, -Z—{J*(O,t)—J‘”(O,t)}=6j(t} (1.2)

4+ 4 4 LA, where ¥ is an integer and A<"4 holds
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for the dimensionless length of the tube »n = Xf {aof’} This is the case of so-calie& guarter-
wave resonance for which, as was established in /1-3/, the linear theory predicts an unbounded
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The reason for the appearance of a resonance in the framework of the linear approximation
can most simply be explained by considering Pig.l (A=10). On the characteristics ¢¥ with slopes
4i we indicate the values of the invariants transported along them. By virtue of the bound-
ary conditions we have
I e TGy Tyt = TF (Bo) £ 20f ()/(ne), Ty == — TH (1),

Tt = Ty - 20F (8)/(e)

We see that when the characteristic C* traverses the tube twice, forwards and backwards

Tl LULE TwWloe L cXw i ¢

invariant transferred by it amquires an increment
A== 20 Go) = f (Re + k + Y] 8(xe)
The periodicity of f implies that 2m-tuple passage along the tube yields an increment in the

value of the invariant of mA and the latter guantity increases without limit as m increases.
An exact analytic solution of the linear problem is given in /3/: in the case of A= 0 the
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solution contains "secular" terms proportional to t. Actually, in the end there is no un-
limited increase since, for long times, non-linear effects leading to stabilization of the
system begin to exert their influence.
Below we shall consider short tubes (n ~ 1). We shall identify the characteristic variable
E () with the instant when the corresponding characteristic C*(C") emerges from the left
(right) boundary. Then integrating the eguations for the characteristics we obtain

C*:z=[1+ﬂ4'—‘eﬂ@)] t—8 + 3',;" el* (1.3)
C':z=n—-[1—-—"%’-—1—el‘(n)](t—n)+ 3:“ el”
¢ t

r={rmi, r={re@da
13 L]

The integral 7*is evaluated at § = comst, and /~at n = const.

In /3-7, 9—12/ the interaction between the waves belonging to different families are
neglected, since the quantities I* determining such interaction are of a higher order of
smallness compared with the remaining terms in the equations for the characteristics. This
substantially simplified the analysis of the almost resonant modes. It was shown in /1—-3/
that this does not hold for the quarter-wave mode considered here.

We shall evaluate the integrals I+ by successive approximations using the characteristics
of the unperturbed gas z =t — §,z= —t + 1 + n as the first approximation. Clearly, the

integrals
¢

t
It={r@r—~t—nydr, Im={/r@r—n—n)dr
3 n

on the piecewise smooth solutions differ from the exact values of [/* by a quantity of order

O (e). This implies that Egs.(1.3), in which /% have been replaced by Iy* define in the
(z, t) -plane curves which differ from the characteristics of the flow by quantities of order
O (e?). We will use the equations

Cit a1+ 25 @] =9 + 27 ol
Criz=n— {1——":&"—‘—31-(7])] (¢ —m + 2 el

(1.4)

to compute the next approximation to /fusing the
notation of Fig.2.

Differentiating (1.4) for constant § and
equating the right sides of the relations obtained,
we establish a relation, accurate to O (g), con-
necting the time elapsed during the motion down
the fixed characteristics C*with the increment in
the value of the characteristic variable 1 of the
waves belonging to the opposite family and inter-
secting the characteristic in question

(t5,%s) dt = fan — 2L e @an— 2FL s (myan +
2 g —meds- () — 2pEerm—n)+
J(2t—E&—n)]dn

iz

71 The term in the square brackets can be neglected
within the accuracy required. Indeed, in the
regions where aJ-/dn, 8JH3E ~ 1, it is of order =
by virtue of the first boundary condition (1.2).
The extent of the zones of flow within which these
derivatives are large is, as we shall see later,
of order &. Therefore, substituting the expression for dt into I+ and integrating, we find
that the contribution of the term in the square brackets to the interaction integral is of
order 3,

When using the expression for dt obtained above, [+ should be calculated with care,
since the trajectory along which the integration is carried out may encounter on its way a
shock wave as a result of intersecting the wave characteristics of the opposite family. Let
the characteristic variables of the waves of the second family have the values 1, and sy
behind and in front of the front, at the point of contact (¢, z,) (Fig.2). Then

S0,

Fig.1l Fig.2 Fig.3
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Here and henceforth for brevity we will use the following notation:

L 3
e W=\ @d L*'et=\ @d
13 1

™ ™
Lrmn)=§ J-(0dn, Iy (m,ne)={ /3 m)an

™ M
By virtue of the obvious estimate |1, — %,3| = 0 (g), the integrals in the formula for I,*con-
taining the small parameter ¢ as a factor are neglected in the interval (w,, 1,). Analyzing
the expressions in the second braces we find, that they are of order e®. 1Indeed, using the
condition z,= z(Ng) = z (ny) and the second formula of (1.3) and recalling the estimate for
| e —na |, We have

|1 2 e |l =) = [ 1~ 2R 00" (1) ] G = ) + Ot
From this it follows that the expression considered is equal to
L™ (15 pe) + ’%—13[1‘ (Ma1) + 77 (Ng9)] (N —Mye) + O (e7) = O (¢%)
by virtue of formula (1.9) of /3/ obtained for the relation at the discontinuity.
The second boundary condition of (1.2) yields J- (n,) = J* (§) + O (b/e). Finally, we obtain

the equation for the characteristic C*emerging from the left boundary at the instant §, written
to within terms of order (O (e!)} inclusive

o= [+ 2E e @) =8 + 255 e {1 () —
%—1— eJ* &) Iy (M1, Ms) "xf-g“d’- (M, na) +
-“—%ti—e[.f" (Me) (t — Mz} — T ®) n]}

Putting z=nr we find the instant at which the characteristic in question reaches the right
boundary

n=t+n[1—2Ffler @+ (2 0] + (1.5)
2 e {h () — 2FL e @ I (1) —

”T_l:i els™ (M, 1) —L}-l eJ*=(E) n}

Analogous arguments applied to the reflected characteristic C-with certain alterations
caused by the lack of symmetry in the boundary conditions, yield the equation

Crrm—[t+ 2 e @) -0 + 255 {10 By — (1.6)
—,‘—#3]‘*@) I &) + 13;53“ eyt &, &) —
2E e[ @)t —8) — T @ 1} 41
The above relation yields the instant f, at which the characteristic ¢*reaches the left bound-

ary after being reflected from the rigid wall., Substituting into (1.6) t; from (1.5) and
putting z = 0, we obtain
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2ne=( 1+ 2Fer @]t — 0 + 255 e {I (nt) —
I* @ ta) — —u—-gti-e-’* ® L t) — PG )] —

—%’iel**@)n — Kfs_i 811~(‘I'|1, t;) —_— —12—%‘33}- 812"'(&, tg)}

Transforming the last equation we obtain
t,=2n[1~~§%'lsj*(§)]+s’afﬂ(ﬁ)+e’ﬁ+§ (1.7)

= % 1 n(n+1+ 3—u), p==(.'<l—x)(t3-«3m)
l,7.
L= /rga

0
which, together with the relation
T+ () = — J* (B} + 28f (t3) / (xe) (1.8)

following from (1.2), forms a closed system of equations determining the solution of the
problem of gquarter-wave resonance.

To derive (1.7} from the previous equation we first transform the difference Iy (g, 8 —
It &, 4. Here it is clear that in calculating the relations connecting the characteristic
variables at the right and left boundary, to obtain the required accuracy it is sufficient to
adopt the second equation of (1.4) for the characteristics (-

2k + 1) I,

t=n [+ X ler-m] g %ent 18 4

Differentiating it and utilizing the chain of equations

HE=m + R e ==t -+ 2@+ 00
He Re
which give the boundary conditions, we £f£ind

at = dn + X3 endr-(m + L2 dn +0 8,61

Consequently
It Gt — I (e ) =22 Lo (772 (1) — 772 ()] +

3 - % oly (o ) - O (3le) = *’:_‘Z‘_’ie:-3 (T 80) +9 (Bfe, &%)

since the expression in the square brackets is of order ¢ (8/e,e) by virtue of the boundary
conditions.

In deriving the last equation, for brevity we did not consider separately problem con-
nected with the regions of large flow gradients and the formation of shock waves. The argu-
ments used in‘deriving (1.5) are fully applicable here.

Consider the integrals I.*(§ &), f;~ (W, t). From the boundary conditions it follows that in
the regions of smoothness J+(§ -+ k- Yy = —J* (), with an accuracy up to the terms of higher
order of smallness. Since the golution is, by definition, a periodic function with period 1,
JrE 4 M) = —J*(E) and JHE+ M) =J"E), i.e. the square of the solution is a periodic func-
tion with a period of &.0n the other hand, ¢ =& + & Y, + 0 (4, ¢, therefore we have, within the
accuracy required,

)
L6, 1) = (2k + 1) S J¥2 (B} dE = (2k + 1) [ = const
o

Analogous arguments yield the same equation for Iy~ (ny, ). All this enables us to write

2 = [1 + "‘j{‘aﬂ(ﬁ)] (¢,~a)—3_§l‘e= x {@(mw 1”"“’%——1'“@)”}

from which we obtain (1.7).

2. Study of the oscillation equations. In order to show more clearly the structure
of the solution sought, we shall use the example given earlier in /3/. We write {1.7) and
(1.8) for two instances ¢, and ¢, where # is in the same relation to {f,, as § is to t,
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t4=2n|_1-~ L eJ+(zz)]+s=aJ+=(z2)+e=ﬁ+t, (2.1)

J(t,) = — J* (ts) + 28f (2)/ (xe)

Let us combine the first eguation of (2.1) with (1.7} and subtract (1.8) from the second
equation of {2.1). This yields

ty=2n {2_. "g“ 5 (:2)] + e 2 (E) + 2% + (2.2)

Tt = J* (&) + 28 If (1) — [ (W)} (xe)

The above formulas were derived with help of the boundary conditions (1.2), and terms of higher
order of smallness were neglected. The operation corresponds to Fig.l, with the linear equa-
tions of the characteristics replaced by their non-linear counterparts. The extraordinary

term (the second term in square brackets) is retained in the formula for ¢, for clarity. The
usefulness of the transformation carried out becomes clear when we note that ¢, differs from
t by an integral number of periods plus a small increment, This enables us, by virtue of

the periodicity of the solution sought, to expand J*(f,) in the smooth regions in series,
Subsitituting the first two terms of this expansion into (2,2) and putting 8 =g3, A = oe?, 0 & 1,
we obtain, with the accuracy reguired,

T (8) ldo + 2a+% (B) + 2B) = 21f (8) — (& + Yo)lix (2.3)

The conclusion that § ~ &?, agrees with the results obtained in /1—3/.
In /3/, where quarter-;rave resonance in long tubes was studied, a mistake was made when

deriving (3.11), which is similar to (2.3) of the present paper. The quantity f({#) was _replaced
there by f{t, — ), which is incorrect, since in this case we have &n~ 1, Nevertheless, this has no
effect on the results obtained in /3/.

Below, we shall assume that f(f) = —2xsin2nk/ (x + 1). The integration of (2.3) yields
a third-degree algebraic equation in the unknown function J+ ()
J+3 () + 3pJ* (E) — 2¢g cos 2nE + C = 0 (2.4)

p== (20 + BYa, ¢=3/l(x + 1) nu]
where C is an arbitrary constant. Its solution is a one-parameter family of curves, from
which we can construct, in principle, knowing the value of the constant { at every segment
of smoothness, a continuous or discontinuous solution of the problem in question. Here the
problem arises of the choice of € and of the method of introducing strong discontinuities in-
to the solution.

In /4/ where half-wave resonance was studied, the problem was successfully overcome, and
one of the decisive aspects enabling discontinuous sclutions to be uniquely constructed was
found to be the physical requirement forbidding discontinuities across which a fall in pressure
occurs. Moreover, the discontinuity appearing in the field of flow continued its periodic
motion along the tube and did not disappear, and this also simplified the analysis of the flow.
The opposite situation arises in the problem of quarter-wave resonance. From (1.2) we see
that on reaching the left boundary the discontinuity vanishes, being reflected locally in the
form of a centred rarefaction wave. The latter represents a discontinuity at the boundary,
and the passage through this discontinuity is accompanied by a fall in pressure. We find that
in describing the oscillations in terms of the differential equations we encounter, in addi-
tion to the discontinuities described above, discontinuities interchanging between the regions
with large gradients in which the gas is compressed. Such regions appear when a bundle of
characteristics generated by a shock wave after it has traversed the tube completely in both
directions impinges on the boundary. All this makes not only makes the approach used in /4/
unsuitable in the present case, but alsc the stricter methods developed later in /1,5-11/.
Undoubtedly the method described in /13/ offers one of the possible ways of sclving the problem
in question, although it requires substantial reformulation before it can be used in the
present case.

Below we shall follow the method used in /3/, which represents essentially the method of
characteristics, the position of which is determined not using the difference equations, but
directly at finite distances from their origins. Modifications to the algorithm given in /3/
are required due to the need to take into account the interaction between the waves of differ-
ent families. Equations (1.7) and (1.8), although incorporating such interaction, were obtain-
ed ignoring the variation in the Riemann invariants at the discontinuities. We shall discuss
this problem and derive a rule governing the introduction of strong discontinuities.into the
selution.

Let the characteristic (*intersect the shock wave propagating in the backward direction.
As a result of the interaction that occurs, the value of the invariant carried along it acquires
an increment eAJ+, AJ* ~ 4 [12]. This change in the value affects the position of the charact-
eristic (1.7) by a shift of the same order &3, which can be neglected. Regarding the
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contribution &3AJ* to (1.8), it appears to be significant by virtue of (2.3), since it 1s of
the same order of smallness as the terms retained in (2.4).

The assessment of the influence of the shock waves on the pressure and velocity fields
requires information on the width of the bundle of characteristics interacting with the shock
wave. We shall use the following argument. The shock wave §, (Fig.3) is reflected from the
left boundary in the form of a packet of rarefaction waves which, dispersing during its motion
along the tube, is reflected from the rigid wall and returns to the left boundary in the form
of a zone of width &k = 0 (e). Here the derivatives 4J+/3f are of the order of 1 /e The zone
and its inverse image on the right boundary represent the regions of large gradients discussed
in Sect.l. The packet propagates from the left boundary in the form of a compressicn wave,
the characteristics of which converge and intersect, after the second reflection from the
right boundary, at a distance [ from the left boundary, generating the shock wave JS,.

We will estimate [ using (1.5)=(1.7). 1In Fig.3 the dashed lines show the separate
characteristic of the bundle. After repeated reflection from the rigid wall its equation,
using the notation of Fig.3, becomes

z_gﬁ_zm—.ztu eJ*(&.)I (2.5)

X e (I (tr, ts) — If {ta B} + 0 (2%

where &, is the characteristic variable corresponding to the actual instant of time t, and

the quantity J*(EQ varies from J}*to J, ' representing the values of the invariants trans-
ported by the outer characteristics of the bundle. The instant of a discontinuity is generat-~
ed corresponds to the condition of "overturning” the wave profile d#/dJ+ (E;) = 0. Differentiat-
ing (2.5) we obtain the estimate ! =0 (g). It is clear from Fig.3 that the extension I, of the
bundle of characteristics interacting with the shock wave is of the same order.

The simplest way to assess the effect of a change undergone by the Riemann invariant in
the shock wave on the solution of the problem in question is to turn to the differential
equation (2.3). This certainly leads to the appearance of an additional term AJ+ on the
right side of (2.3), which will differ from zero, as was shown above, in the narrow extension
zones ~g, lying near the shock wave and the region of compression where the gradients are
large., It is clear therefore that inclusion of AJ+ will introduce corrections inte the
solution, which are of the same order of smallness e and can therefore be neglected.

Let us derive the rule for introducing strong discontinuities into the solution. From
(2.5) we see that up to the instant the shock wave appears, the characteristics of the initial
compression zone are grouped in the region of extension O (e¥) . Consequently their further
relative displacement, dependent on the interaction integrals and the quadratic terms, will
be of order O (&'). Therefore, from the first appearance of the discontinuity up to its arrival
at the left boundary, the motion of the characteristics, and hence the discontinuities, are
deseribed with the required accuracy of the order of 0 (s?) by the formulas for simple waves.
Thig in turn dictates the rule for introducing a shock wave as a simple wave into the region
where the solution is multivalued. The position of the region is determined by the condition
for the armag of the fimiras bounded bv the curve f+ l‘x lf,) Far Fivad ¥ and hv the shock waye

for the arsas of the figures bounded by the curve for fixed x and ck wave,
and lying on opposite sides of the latter, to be equal.
Let us derive a formula analogous to (1.9) /3/ for the case in questio
== R Ny e 4 F 3 P AT P o o

wave reaches the left boundary at the instant !, and the characteristics in
initial coordinates &, Bs, then the area rule state that

JS2+
(e—t)drr =0, Jt=T"En) Jut=J"Gn)

Tat

Then by virtue of (1.7) the following series of equatiocns holds:

Tt
[P ® 1 42, 206% 43 Py 14 Eo) =0
y E—t)dit=— RS(JSQ-—JS1}—"‘§""\JSQ Ty — L e By =10
J8l+
Using this formula we can show that the integral law of conservation of the invariant holds
for the discontinuous solutions
te Ez
SJ‘(O,t)dt::«..“ @ dE + 2 ne (I ) — T E)] — 2 [T ) — T G)] (2.6)
& &1
(¢, and l, are obtained from(l.7) where { is replaced by §; and & respectively). In the case

of smooth solutions, (2.6) becomes a trivial corollary of (1.7).

Below we shall need some information on the roots of the cubic equation (2.4) with ¢ =0

{
A
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In the limit as e— 0,0 = const, the quantity g tends to a constant value and p depends not only
on the length of the tube determined by ¢, but also on the solution itslef through f., The
roots of (2.4) are found using the Cardenc formulas.

The graphs shown in Fig.4 and 5 by dashed lines represent schematically the behaviocur
of the solutions. If p>0, then a unique real smooth solution exists of the type shown in
Fig.4c. The amplitude of the oscillations (by which we shall mean the highest numerical value
of J* increases as p increases. On passing to p< 0 We have a single continucus multivalued
solution (Fig.4a and b}, and this holds as long as p*+ ¢ >0. As p decreases the points at
which the solution turns (#J+/8f = co) approach each other, and merge when p*+ ¢ = 0. Further
reduction in p leads to the solution separating into three smooth branches (Fig.5a and b) and
the amplitude of the branch passing through zero decreases as p decreases, while the amplitudes
of the remaining two branches increase. The value p= —1.53 at k=0 corresponds to the limit
mode p*+4 ¢*=0 Figs.4a and 5b depict the situations close to the limit when the approach is
made from different directions, namely from p*+ ¢#>0 and p* 4 ¢« 0, respectively.

3. Numerical construction of the solution. periocdic solutions of (1.7) and (1.8)
were constructed using the scheme given in /3/. First a certain distribution J+ (), was
defined on a segment of unit length [, E,+ 1] satisfying the conditions

kbt

§ rE=0 rea=rt@+ ¢B.1)

%‘
By the transformation (1.7} the segment [, &+ ] becomes [t{fy), t(&+ 1}, which is obviously
also of unit length. If the solution was "tilted” during this process, shock waves were
introduced in the regions of multivaluedness according to the rule given in Sect.2.
The quantities J*(}) in the section [t(§,), t{f+ )] were then found from (1.8). Clearly,
the new function constructed on [i(E), ¢ (§s + 1)] alsosatisfied conditions (3.1) and the first
equation follows from the law of conservation of the invariant (1.6), while the second one is
trivial. 1In computing, the first condition of (3.1) holds only approximately and has been
uged in the computation asa control. New values of J+(}) obtained were continued periodically
onto [k Eo+ 1], and the procedure described above was repeated until the determination was
completed.

The method was used to carxy out the computations fox various values of e and tube lengths
n. As a result it was established that for every fixed ¢ a range of values of n exists close
to the resonance values where two essentially different oscillatory modes are realized. In
one case the solution contains strong discontinuities, in the other case it is continucus, and
the amplitude of the discontinuous solution exceeds that of the continuous sclution. In Figs.
4 and 5 the solid lines represent the "oscillograms®

Foy = b ) (2t For 5 =105, k=0, x = 1.4

The dashed lines depict the solutions (reduced to the same variables J°and =t ). The constants
p and ¢ were computed from the corresponding numerical solutions. The graphs indicated in
Figs.4 and 5 by the same letters correspond to single values of o, namely to «~0.38 for 4a
and 5a, and —0.195 for 4b and 5b. The values of p for Fig.4a and b are —1.44 and —0.47,
for Fig.5a and b they are —3.6 and ~1.67, and for Fig.4c they are — 0.002, 0 = 0.097. When o =
- 0,385, was used in the computations, solutions with discontinuities could not be constructed
and a continuous mode was developed in the computations.
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We can conclude that two modes exist within the accuracy requires up to the instant when
& limit situation p*+¢'=0 occurs. We note that in accordance with (2.4) the critical wvalue
p == 153, while the computations gave p = —{.44. The computations carried out for other values
of ¢ confirm the correctness of the deductions made. In Fig.6 we show a graph illustrating
the dependence of the amplitude 4 on o¢. We see that two oscillation modes exist in the range
~0.38 o < — 0485,

The situation described ahove bears a qualitative resemblance tc the case of forced
osicllations of a pendulum with Gamping /14/. We note that the above discussion can be
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applied to the case considered in /l/, with the effect of the reflection coefficient taken
into account.

IO
3 e = r*
a ~\\ 7 Pl
1 1 - = 151Aa

- -t - o
~L - ~04 . ~0.2 ] 52

2= e

fig.5 Fig.6
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